Bugün "düzgün dairesel hareket" olarak adlandırdığımız hareketi tartışacağız. Düzgün dairesel hareket nedir? Cisim bir çember etrafında dolanmaktadır, r yarıçapına sahip ve cisim buradadır.
Bu hız.
Dik bir vektör.
Ve bir süre sonra cisim burada olduğu zaman, hızı değişmiştir fakat sürat değişmemiştir.
Periyot olarak adlandırdığımız T den bahsedeceğiz.
Tabii ki, saniye birimindedir.
Bir tur dolanmak için geçen zamandır.
Saniye başına dönmelerin sayısı olarak adlandırdığımız, frekans, f’den bahsedeceğiz.
Ve böylece birimi ya saniye üzeri eksi bir ya da, çoğu fizikçiler onu "hertz" olarak adlandırır. Ve böylece frekans 1 bölü T dir.
Ayrıca açısal hızdan, w dan, bahsedeceğiz.
Açısal hız saniye başına ne kadar metre değil, ne kadar radyan anlamına gelir.
Bir daire çevresinde 2p radyan olduğu için,
Tam bir dairede,
Bir defa dolanması T saniye alacaktır ve hemen w nın, 2p bölü T ye eşit olacağı oldukça açıktır.
Bu sizlerin hatırlamanızı istediğim bir eşitliktir.
w , 2p bölü T ye eşittir
2p radyan, büyük T saniye
Şüphesiz hız, yani v, dairenin çevresi, 2p r, bölü bir defa dolanması için geçen zamandır. Fakat 2p bölü T, w olduğu için bunu wr olarak yazabilirsiniz. Ve bu da hatırlamanızı istediğim bir eşitliktir.
Bu iki eşitliği gerçekten hatırlamak isteyeceksiniz.
Sürat değişmiyor, fakat hız vektörü değişmektedir.
Dolayısıyla, ivme olmalıdır.
Bunun tartışması bile olmaz.
İvmenin ne olması gerektiğini büyüklük ve yön açısından türetebilirsiniz.
Türetmesi yaklaşık beş, altı dakika alır.
Kitabınızda bulabilirsiniz.
Türetilmesinden ziyade daha çok fiziği hakkında konuşma yapabileyim diye sizlere sonuçları vermeye karar verdim. Kitaptan okuyabilirsiniz
Hız vektöründe değişiklik yapmak için gerekli olan bu ivme, her zaman dairenin merkezine yöneliktir.
Biz bunu "merkezcil ivme" olarak adlandırıyoruz. Merkeze doğru yöneliktir
Vektördür.
Ve merkezcil ivmenin büyüklüğü, v kare bölü r ye eşittir. Ve böylece, aynı zamanda w kare r dir.
Şimdi üç eşitliğimiz var ve bu üç eşitlik hatırlamak isteyeceğiniz yegane eşitliklerdir.
Basit bir örnek verebiliriz.
Havayı istediğiniz tarafa, içeriye ya da dışarıya veren pervaneli bir elektrikli süpürgemiz olsun.
Bu elektrikli süpürgenin pervanesinin yaklaşık 10 cm yarıçapına sahip olduğunu ve dakikada 600 devir yaptığını, yani 600 rpm olduğunu varsayalım.
600 rpm’yi frekansa, f’ e, çevirecek olursak, yaklaşık 10 Hz eder ve bunu da periyoda çevirirsek yaklaşık 1 bölü 10 saniye eder.
Bu durumda, 2p bölü T olan w açısal hızı yaklaşık 63 radyan bölü saniyedir. Ve wr ye eşit olan v hızı, yaklaşık 6.3 metre bölü saniyedir..
Merkezcil ivme, benim amacım gerçekten bunu bulmaktır.
Merkezcil ivme w kare r dir, eğer isterseniz v kare bölü r’yi de alabilirsiniz.
Elbette aynı cevabı elde edersiniz. Ve bunun yaklaşık 400 metre bölü saniye kare olduğunu bulacaksınız.
Ve bu oldukça büyüktür.
Yani, yerçekimi ivmesinin 40 katıdır.
Bu olağanüstü bir ivmedir. Basit bir elektrikli süpürgesinde.
İvmenin, merkezcil ivmenin r ile lineer değiştiğine dikkat edin.
r ile ters orantılı olduğunu düşünmeyin.
Bu bir hatadır. Çünkü v nin kendisi r nin bir fonksiyonudur.
Eğer burada otursaydınız, bu durumda hızınız küçük olurdu.
Tüm hareket boyunca w aynı olacağı için, gerçekten bu eşitliğe bakmak zorundasınız ve merkezcil ivmenin r ile orantılı olduğunu görmektesiniz.
Eğer bu dönen bir disk ve siz de bu diskin merkezinde idiyseniz, merkezcil ivmeniz sıfır olurdu.
Ve dışarıya doğru yürüdükçe merkezcil ivmeniz artacaktır
İvme, bir şeylerden kaynaklanmalıdır.
Karşılıksız hiçbir şey yoktur.
Bu hızın değişiminden sorumlu olan bir şeyler olmalıdır. Ve bu ya itme ya da çekme olarak adlandıracağım bir şeydir.
Bir sonraki derste, Newton’un kanunlarını anlattığımız zaman, kuvvet kelimesinden bahsedeceğiz. Bugün sadece itme ve çekme kelimelerini ele alacağız. Yani bir çekme veya itme olmalıdır.
Bunun bir dönen masa olduğunu ve sizin de, bu dönen masanın üzerinde burada bir sandalyede oturduğunuzu düşünün.
w açısal hızı ile dönüyor ve sizin merkeze olan mesafenizin, küçük r olduğunu söyleyelim.
Bu sandalyede oturuyorsanız, kaçınılmaz olarak merkezcil ivmeyi hissedersiniz;
ac merkezcil ivmesi, w kare çarpı r dir.
Bu nereden kaynaklanmaktadır? Eğer koltuğunuz bu dönen masaya vidalanmış ise, bu durumda, arkanızda bir itme hissedeceksiniz. Bu şeyin üstünde oturuyorsunuz, dönüyorsunuz ve koltuğun sizi arkanızdan ittiğini hissedeceksiniz. Bir itme hissedeceksiniz ve bu sırtınızdan içeriye doğru bir itmedir.
Evet, şimdi bunu kırmızı tebeşirle çizeyim.
Ya arkanızdan bir itme hissediyorsunuz.
Görünürde, bu itme ivme için gereklidir.
Alternatif olarak, önünüzde bir çubuk olduğunu varsayın.
Bir sandalyede oturmuyorsunuz.
Arkanızdan bir itme olmuyor.
Fakat çubuğa tutunuyorsunuz ve şimdi çubuğu tutarak dönebilirsiniz.
Şimdi çubuk sizi, aynı doğrultuda çekmektedir.
Yani şimdi sizi birisinin çektiğini söyleyebilirsiniz.
İster çekme olsun ister itme, bu ikisinden herhangi biri, dönen masa üzerinde sabit sürat ile bir dairesel yörüngede dönmeniz için gereklidir.
Şimdi bizim, hiçbir bilimsel altyapıya sahip olmayan insanlara sorduğumuz klasik soru geliyor
Eğer bu şekilde dönüyorsan ve bu hareketi yapmak için bir şey sizi itiyor veya çekiyor ise ve aniden bu itmeyi bıraktığınızı farz edin
Çekme artık yok. (hışşt)
Şimdi dönen masa üzerinde oturan kişinin hareketi nasıldır? Ve bilim adamı olmayan pek çok kişi, böyle hareket edeceğini söylerler. Bu sizin bir tür sezginizin söylediğidir.
Bir dairenin etrafında dönüyorsun ve aniden itme veya çekme kesiliyor. Ve kesinlikle bir spiral yörüngede dönüyorsun. Fakat durum böyle değildir.
Eğer böyle bir şey olursa ne olur? Bu durumda hız, bu yönde ve itme ya da çekmeden kurtuluyorsunuz ve bu yönde dışarıya doğru fırlayacaksınız. Ve yerçekiminin olmasına ya da olmamasına bağlı olarak, bir değişiklik olacaktır.
Eğer yer çekimi kuvveti olmasaydı, Sadece bu hat boyunca böyle ilerlemeye devam edecektiniz ve bu çılgın spiral hareketi yapmayacaksınız.
Burada döndüreceğimiz bir diskimiz var ve ucunda
Ve diskin ucunda, küçük bir top var.
Bu top diske bir ip ile tutturulmuştur.
Şimdi bu düşey düzlemdedir ve bu w açısal hızı ile dönecektir.
Ve burada bir ipimiz var ve bu ip topa tutturulmuştur ve tüm sistem birlikte dönmektedir ve bu anda bu şekilde bir hıza sahiptir.
Ve bu nedenle tartışması bile olmaksızın, w kare r büyüklüğünde bir merkezi ivme vardır. İsterseniz v kare bölü r olarak ta alabilirsiniz
Şimdi buradan kesiyorum. Yani bu, itme veya çekmeyi kaldırmanız gibidir.
Buradaki ip, bu topa çekme vermektedir.
Bu top, ipten bir çekme hissediyor ve bu çekme ona merkezcil ivme sağlıyor.
İpi kesiyorsunuz ve çekme artık yok. Ve cisim uzaklaşacaktır.
Eğer burada yerçekimi varsa, bu ders salonunda olduğu gibi, bir parabol hareketi yapacaktır ve hareketi burada son bulacaktır.
Eğer, ipi tam olarak buradayken kesecek olursam
Tabii ki bundan sonra, yukarıya doğru düz bir hat boyunca gidecek ve yerçekimi ona etkiyecektir. Bir noktada duracak ve geri gelecektir.
Gerçekten düz bir hat boyunca ilerleyecektir.
Fakat açıkça, çoğu insanın düşündüğü gibi bir girdap şeklinde hareket etmeyeceğini göreceksiniz.
Sadece gidecek. (vışşt)
Ve geri gelecek.
Haydi, buna bir bakalım.
İşte top buradadır.
İp bunun gerisindedir ve ipi göremezsiniz
Onu döndüreceğim, belli bir hıza gelebilmesi için bekleyeceğim ve burada arkada duran sizin yine göremeyeceğiniz bıçağa bastığım zaman,
İpi kesecek (kıgk)ve top (vuşştt) yukarı gidecektir.
Bunun için hazır mısınız? Hazır olduğunuzdan emin misiniz? Üç, iki, bir, sıfır.
OO, Bu çok yüksek oldu.
Görüyorsunuz ki böyle bir hareket yok.
Sadece gitmiş olduğu yönde, hareketine devam etti
Onu doğrusal olarak yukarı yönde attığım için parabol hareketi yapamadı.
İp, dönen disk ve top arasında bağlantıyı oluşturur ve bu yüzden çekme, merkezcil ivmeyi oluşturmaktadır.
Şimdi gezegenleri düşünelim.
Gezegenler güneşin etrafında döner.
Hiçbir ip yoktur. Bu durumda kim itiyor? Kim çekiyor? Fakat çekimin olması gerektiği açıktır.
Gezegenleri çeken güneş olmalıdır.
Gezegenlerin yörüngelerinin tam dairesel olmadığını ve bu yüzden gerçekten düzgün dairesel dönme yapmadıklarının farkındayım.
Yörüngeleri birkaç hafta içinde detaylı olarak ele alacağız.
Dairesel yörüngeler ve eliptik yörüngeleri.
Şimdi kolaylık olsun diye, onlar hakkında biraz bilgi sahibi olalım diye, yörüngelerin yaklaşık dairesel olduğunu farz edelim.
Ve şimdi sizler kitabınıza bakabilirsiniz.
Ben sizin için baktım.
Hatta sizin ilk sürüm kitaplarınızda bile, gezegenlerin güneşe olan ortalama mesafesinin ne olduğuna ve güneş etrafında dönme periyotlarının ne olduğuna bakabilirsiniz.
Tüm gezegenler için güneş etrafında dolanma zamanları, aynı değildir.
Gezegenler, dönen bir masaya bağlı değillerdir.
Dönen bir masa üzerindeki bir insan her yerde, aynı zaman içerisinde dolanacaktır.
Bunun gezegenler için doğru olmadığını biliyoruz.
Dünya’nın güneş etrafında dolanması bir yıl sürer.
Jüpiter’in güneş etrafında dolanması 12 yıl alır. Bu yüzden tüm gezegenler için w nın aynı olduğunu düşünmek gibi bir hata yapmayın.
Bu doğru değil.
Bu yüzden, çeşitli gezegenlere olan ortalama uzaklıklara bakıyorum.
Uzaklıkların milyonlarca kilometre olduğunu göreceksiniz.
Merkür’ün Plüton’a kıyasla yaklaşık 100 kat daha yakın olduğuna dikkat edin.
Bu arada, bu Web’ te var. Bu yüzden yazmanıza gerek yok.
Bunu 8.01 dersinin ana sayfasında bulabilirsiniz.
Daha sonra, bunların güneş etrafında dolanmalarının ne kadar yıl aldığına baktım.
Jüpiter için 12 yıl, Dünya için bir yıl
Ve tüm diğer değerlere baktım.
Daha sonra, periyotları bildiğim için, w ları hesaplayabilirim.
w, 2p bölü T dir, Böylece w yı bulurum.
Ve daha sonra w nın karesini, güneşe olan ortalama uzaklık ile çarparak merkezcil ivmeyi bulurum.
Böylece gezegenler bu çılgın birimler cinsinden merkezi ivmeye maruz kalmaktadırlar. Fakat birimler burada kimin umurunda? Plüton’dan 100 kere daha yakın olan Merkür’ün 10.000 kat daha büyük merkezcil ivmeye sahip olduğuna dikkat edin.
100 kere yakın ve 10.000 kere daha büyük merkezcil ivmeye sahiptir.
Yaptığım şey, merkezcil ivmeye karşılık güneşe olan ortalama uzaklığın verilerini çizmek oldu. Ve bunu logaritmik-logaritmik kâğıda yaptım.
Ve hemen dikkat çeken,
Tüm noktalar için oldukça dikkat çekici olan
Bütün gezegenler için bunları yaptığımda.
gezegenler, doğrusal bir çizgi üzerinde yer almaktadır.
Bu çizginin eğimi nedir? Evet, birçok eğimi denedim ve eğimin neredeyse eksi 2 ye oldukça yakın olduğunu buldum
İşte burada eksi 2 eğimi görülmekte. Bunu üzerine getirebilirim ve çakışmanın kesinlikle harika uyduğuna dikkat edin.
Bundan dolayı, çekimin sonucu olan merkezcil ivmenin bir bölü R kare ile uyuştuğu sonucundan kaçamazsınız.
Bunu fizikte 1 bölü R kare kanunu olarak adlandırırız.
Ve bu nedenle, yerçekiminin etkisi 1 bölü R kare ile azalmalıdır.
Yani, Plüton, Merkür karşılaştırmasında olduğu gibi, 100 kat daha uzakta iseniz, Bu durumda yer çekiminden kaynaklanan merkezcil ivme 10.000 kez daha küçüktür.
Ve ileride yerçekimi hakkında çok şey öğreneceğiz.
Şimdilik burada bırakalım.
Eğer güneşi uzaklaştırsaydınız, aynen çekmeye sebep olan ipi kesme durumu gibi, bu durumda gezegenlerin sadece düz bir çizgi boyunca uzaklaştığını görürdünüz.
Gitmeye devam ederlerdi.
Artık onları çekecek hiç bir şey olmazdı.
Şimdi döndüreceğimiz cisme bakalım.
Döndüreceğim bir cam tüp ve içerisinde de bir bilye var
Cam tüp oldukça pürüzsüz.
Cam tüpüm burada.
Bilye burada
Bu yönde belli bir w açısal hızı ile döndüreceğim ve ekseni tahta düzlemine diktir.
Ve buradaki bilye bu anda bu şekilde bir hıza sahiptir. Ve cam tüp oldukça pürüzsüz, ve bilye de oldukça pürüzsüz.
Cam bilyeyi ne itebilir ne de çekebilir
Bilyenin bu yönde, bu şekilde dönebilmesi için bir merkezcil ivme ihtiyacı olduğu için, bilye her şeyi göze almıştır.
Fakat bu merkezcil ivmeyi sağlayacak hiç bir şey yoktur.
Bu durumda bilye, güneşin uzaklaştırılması halinde, gezegelerin yaptığının aynısını yapacaktır
Bilye, gittiği yöndeki gitmesine devam edecektir.
Tüp burada olana kadar, bilye burada ve tüp burada olana kadar, bilye buradadır
Bu yüzden bilye kenara doğru gidecek yolu bulacaktır ve tabii ki bu santrifüj olayının çalışmasının temel prensibidir.
Büyükannem, harika bir kadındı ve hatırlıyorum o bu tür fantastik fikirlere sahipti.
Marulu kullandığı zaman, marul kurulamak için hiçbir iyi yöntemimiz yoktu. Marulu alırdım ve kâğıt havlu ile böyle yapardım.
Büyükannemin kendine özgü bir yöntemi vardı.
Süzgeci alırdı ve tabii ki öncelikle marulu yıkayacağız.
Ben bir kez yıkardım.
Büyükannem üç kere yıkardı. Fakat büyükannelerimiz bunun için vardır.
İşte marul burada.
Bizler aynı zamanda ıspanağa da düşkünüz. Bu yüzden, biraz ıspanak ekleyelim.
Onu da yıkayacağız.
İşte ıspanak.
Daha sonra onların üzerini örtmek için bir şeyler alırdı.
Belki biraz, streç film veya başka bir şey
Üzerine koyuyoruz ve bu filmin orada durması için etrafına bir plastik bant geçiriyoruz.
Ve şimdi yapacağı şey, onu etrafında döndürmektir.
Ve bu durumda su, aynen bu bilyeler gibidir.
Su kenara doğru gidecektir, fakat delikler olduğu için su dışarıya çıkacaktır.
Büyükannem zeki değil mi? Tamam, sizlere bir gösteri yapacağım.
Dikkatli olun, ders notlarınızın üzerine biraz su sıçrayabilir.
Sizlere bunun arkasındaki temel düşüncenin epeyce ilginç bir fikir olduğunu göstereceğim.
Bu arada büyükannem dışarı çıkar ve bunu dışarıda yapardı.
Benim başka seçeneğim yok, Bu yüzden burada yapacağım.
İşte başlıyoruz.
Gördünüz mü? İşte kurutma yöntemi bu.
Oh, manyetik çileğimi kaybettim.
Bu süreç içinde bir ayrıntıdır
Şimdi kuru, temiz ve güzel marulu elde ettiniz.
Bu 8.01 dersinin işe yaradığını göstermektedir ve bu santrifüj olayının ilkel bir versiyonudur.
Herhangi bir medikalden satın alabileceğiniz bu şey, son zamanlarda maalesef, babaannemin yönteminin yerini almıştır.
İşte burada bir tane var.
Um, çok sıkıcı.
Çok gözden düşmüş.
Salatayı buraya koyup ve tek yapmanız gereken şey döndürmek ve o kurutur.
Bir santrifüj olayı.
Bu aslında büyükannemin keşfinin, oldukça gelişmiş yüksek teknolojik, bir versiyonudur.
Ve neredeyse hiçbir zaman heyecan verici değildir.
Gerçekten romantizmin günleri artık bitti. Maalesef öyle.
Şimdi, bir tarafta dönme ve diğer tarafta da merkezcil ivme arasında bir ilişki kuracağım.
Merkezcil ivme ve hissedilen yerçekimi arasında bir ilişki kuracağım.
Yerçekimini hissedeceğiniz bir yöntem,
Sizleri çeşitli pozisyonlara sokacağım ve daha sonra sizlere yerçekiminin yönünü soracağım.
Sizler için yapay yerçekimi oluşturacağım.
Ve ilk olarak şunları yapalım.
İlk olarak sizi bir ipe asıyorum.
İşte, böyle.
Ve sizlere itme mi yoksa çekme mi hissettiğinizi soracağım? Ve siz, "Evet, bir çekme hissediyorum" diyeceksiniz. Ve siz bu yönde bir çekme hissedeceksiniz.
Ve böylece şimdi de, "yerçekimini hangi yönde algıladığınızı soracağım?" ve siz deli olduğumu düşüneceksiniz.
Bu durumda haklısınız. Fakat yine de "Yerçekimi bu yöndedir" diyeceksiniz. Çekmenin ters yönündedir..
Tamam, şimdiye kadar her şey yolunda.
Şimdi sizleri yere ayakta duracak şekilde koyuyorum ve sizlere bir çekme mi veya bir itme mi hissediyorsunuz diye soruyorum. Ve siz “bir itme hissediyorum.” diyeceksiniz.
Yerden yukarıya doğru bir itme hissederim. Ve sizlere "Hangi yönde yerçekimini algılıyorsunuz diye soruyorum? " Ve sizler de, “aman, sıkıcı olmayın.” diyorsunuz.
Yerçekimi bu yöndedir. "Ve daima, bana yerçekiminin ister itme olsun isterse çekme olsun, bunların tersi yönünde olduğunu söyleyeceğinizin farkına varın.
Tamam, şimdi sizlere karşı biraz daha sert olacağım.
Şimdi sizleri, sanki bir elma gibi, bir ipin etrafında döndüreceğim. Ve bunu sizinle yapacağım.
Sizler elmanın sonundasınız.
Hayır, sizler elma olacaksınız, sonunda değil.
Sizler ipin ucundasınız.
Sizler elmasınız.
İşte burada
İşte ... Sizi zavallılar
Ve size "bir itme mi veya bir çekme mi hissediyorsunuz?” diye söylüyorum." Ve siz, "Evet, bir çekme hissediyorum." diyorsunuz. Güzel, hangi yönde? "Bu yönde bir çekme hissediyorum" diyorsunuz. Şimdi size " yerçekimini hangi yönde hissediyorsunuz? diye soruyorum" Ve siz," çekmenin tersi yönünde" diyorsunuz. Yani bu durumda yerçekimini sizler için oldukça gerçek olan bu yönde hissediyorsunuz.
Şimdi, bu özel durumda, yön zamanla sürekli değiştiği için, sizleri döndürdüğüm için,
tabii ki, başınızın döndüğünü hissedeceksiniz. Fakat bu bir ayrıntıdır.
Siz burada iken, yerçekimini bu yönde hissedeceksiniz ve burada iken ise şu yönde hissedeceksiniz.
Yani sizler, çekmenin ters yönünde bir yerçekimi hissedeceksiniz. Ve sizleri ne kadar hızlı döndürürsem, o kadar daha büyük çekme hissedeceksiniz. Bundan dolayı, hissedeceğiniz yerçekimi daha büyük olacaktır.
Bir marangoz, bir çekülü kullanır ve marangoz çekülü sadece bu şekilde tutar.
Çekme bu yöndedir. Ve böylece marangoz "Tamam, hissedilen yerçekiminin bu yönde olduğunu" söyler. Bu durumda marangoz haklı gibi görünüyor.
Yerçekimi bu yöndedir. Fakat bu da aynı fikirdir.
Çekül yerçekiminin yönünü bulmak için kullanılıyor.
Burada gördüğünüzü, bunu, yerçekimini bulmak için bir çekül olarak düşünün.
Yerçekiminin yönünü bulmak için kullanılan bir çekül olarak.
Şimdi siz dış uzaydasınız.
Kaptan Kirk’ ı oynayacaksınız. Ve siz yerçekiminin olmadığı bir yerde uzay istasyonunun içindesiniz.
Bu yüzden, sizler için biraz yerçekimi oluşturacağız.
Biz biraz yapay yerçekimi oluşturacağız.
Böylece, bu sizin uzay istasyonunuz olsun, çok büyük, yaklaşık 100 metre yarıçaplı bir teker gibi olsun. Bunu sizler için çok süslü yapacağız.
Buradaki gibi çevresinde, bazı koridorlar yapacağız.
Bunu, çok ilginç bir uzay istasyonu yapacağız. Bunun gibi ve bunun gibi.
Ve w açısal hızı ile ekseni etrafında dönmektedir.
Siz buradasınız
İşte burada
Dönüyorsunuz.
Bu yüzden, belli bir hız ile dönüyorsunuz. Tartışmasız bir şekilde,
bu v hızı, w çarpı r ye eşittir, ve sizi merkeze doğru bir merkezcil ivmenin etkimesi gerekir.
Bunun tartışması bile olmaz.
Bu ivmeyi nereden elde ettiniz, kaynağı ne? Eh, zemin
Bu sizin zemininiz
Ve sizleri itiyor.
Bu zeminin şimdi beni itmesi gibi oldukça basit
Bu zemin itiyor.
Bunda bir yanlış yok. Düşmüyorum.
Ve böylece size "Hangi yönde yerçekimini algılıyorsunuz?" diye soruyorum ve sizler yerçekiminin yönünü, sizler için gerçek olması gerektiği gibi budur diyorsunuz.
Başka birisi şurada duruyor.
Eğer bu kişiye yerçekiminin yönünün ne olduğunu sorarsam, bu kişinin düşüncesi hakkında ne düşünüyorsunuz?
Kesinlikle, doğrusal olarak dışarıya doğru, zemindeki itmenin tersine doğru.
Şimdi, dünya üzerindeki çekim ivmesine benzemesi için, bu uzay aracını ne kadar hızlı döndürmek zorunda olduğumuzu hesaplayabiliriz
Ki bu çekim ivmesi 9.8 metre bölü saniye karedir.
Sadece biraz yuvarlayarak, 10 olarak kabul edelim.
Yani, bu koridor etrafında yürüyen insanların w kare R şeklinde olan ivmelerinin yaklaşık 10 olmasını istiyoruz. Bu durumda w kare yaklaşık 0.1 dir ve buradan da w, yaklaşık 0.3 radyan bölü saniye olarak elde edilir.
Ve dolanma periyodu yaklaşık 2p bölü w dır ve yaklaşık 20 sn dir.
Ve teğet hızın, v nin değeri, ki bu w çarpı R ye eşittir, 0.3 çarpı 100, yaklaşık 30 metre bölü saniyedir. Bu sayılar sizlere sadece bir fikir vermek içindir ve hiçbir şekilde tuhaf değildir.
İlginç olan şey hissedilen çekimdir.
Ve dolayısıyla burada merkezcil ivme sıfırdır.
Burada hiçbir şey yok, burada herhangi bir çekim yok.
Ve böylece burası, sizin uyuma bölgesi olarak belirleyeceğiniz, iyi bir yer olabilir.
Şimdi şu ilginç soruyu soruyorum.
Buralarda herhangi bir sorun olmadan yürüyebilirsiniz.
Bu tekerlek parmaklarının içine yürüyebilir misiniz? Peki, burada olduğunuz zaman, uyuma bölgenize doğru yürüyebilir misiniz? Siz burada bulunduğunuz zaman, öncelikle sizlere çekimin hangi yönde olduğunu soruyorum? Ve sizler, "çekimin bu yönde olduğunu söyleyeceksiniz". Şimdi uyuma bölgenize yürüyebilir misiniz? Ve cevap nedir? Yürüyemezsiniz.
Çekime karşı yürüyemezsiniz.
Bu sanki sizlerden, tavanda yürümenizin istenmesi gibi olur.
Bunu nasıl yaparsınız? Bir asansör veya bir merdivenle. Merdivenlerde yürüdüğünüz zaman, merdivenlerden bir itme alacağınız için bu normaldir.
Yani burada bir merdiven olabilir ve bu kişi bu nedenle buraya gidebilir.
Fakat burada yürüyemezsiniz, çünkü çekim daima bu yöndedir.
Ve şimdi sizlerin uyuma bölgesinde olduğunuzu varsayalım. Ve sabah kalktınız ve bu yönde, bu yönde, bu yönde veya bu yönde yürümeye karar verdiniz.
Önemli değil.
Bunu bu koridor içine yavaş yavaş girerek ve dikkatli bir şekilde yürüyerek yapabilir misiniz? Ne olurdu? Evet
Dışarı doğru uçardınız.
Bu bir intihar olurdu. Halı hazırda uyuma bölgesinde olduğunuz zaman, belki çok büyük bir çekime maruz kalmayacaksınız. Fakat yürüdükçe etkiyecek olan çekim büyümeye başlar.
Ne kadar uzakta bulunursanız o kadar fazla etkiyecektir.
Buraya vardığınız zaman, 10 metre bölü saniye kare olacaktır.
Hatırlayın? İvme değerimizi 10 metre bölü saniye kare olarak almıştık. Çünkü dünyayı taklit etmek istedik ve bu yüzden gerçekten çarparsınız.
Bir kuyunun içine düşme gibi, bir kuyunun içine atlama gibidir
Tamamıyla aynı değildir. Çünkü üzerinize etkiyen herhangi bir çekim olmaksızın harekete başladınız.
Fakat hareket etmeye başladığınızda, durum kontrolünden çıkacaktır ve gerçekten hızlı bir şekilde çarpacaksınız.
Aynı asansörü kullanabilirsiniz.
Aynı merdiveni kullanabilirsiniz.
Bu, yanlış bir davranış olmaz.
İçerisinde çok küçük parçacıkların olduğu bir sıvıya sahip olduğumu varsayalım.
Oldukça küçük, çok küçük ve o kadar hafif ki, dibe çökmeyecekler.
Daima renkli süt gibi bir sıvı göreceksiniz.
İşte bu küçük parçacıkların olduğu tüp burada.
Tüp burada durmakta ve içindeki sıvının yüzeyi bu şekilde bir çizgi gibidir.
Neden? Eh, bu açıktır.
Yerçekimi bu yönde olduğu için.
Yani, sıvının yüzeyi her zaman yerçekimine diktir.
Burada su ile dolu iki bardak görüyorsunuz.
Yüzeyleri yerçekimine diktir.
Ve şimdi bunu yaklaşık, bu eksen boyunca döndüreceğim.
Çevresinde bu şekilde dönecek.
w açısal hızı ile döndüreceğim. Ve bu mesafe, R dir.
Bu nedenle, bu yönde bir merkezcil ivme vardır. Ve bu durumda parçacıklar şimdi, yerçekiminin artık bu yönde olacağını söylerler. Camın kenarları ve sıvı, merkezi ivmeyi oluşturmak için bu yönde itecektir.
Eğer onlara "yerçekimi hangi yöndedir?" diye sorarsanız, onlar "yerçekimi bu yönde diyecekler. Ve bu yöndeki yerçekiminin etkisi, bu yerçekimi etkisinden o kadar büyüktür ki bunu ihmal edebilirim.
Birazdan göreceksiniz.
Bunu tamamıyla ihmal edebilirsiniz.
Ve bu durumda sıvının yüzeyi, "Ben yerçekimine dik olacağım" diyecektir. Ve böylece sıvı bu şekilde görünecektir.
Ve dönüyor iken, bu eğimli tüp içindeki sıvı dikey olacaktır.
Sadece bu olmayacak, buradaki parçacıklar daha öncekine kıyasla, çok daha büyük bir yerçekimine maruz kalacaklardır. Ve bu onları ağırlaştırır.
Artık onlar hafif parçacıklar değillerdir.
Onlar ağır parçacıklardır ve ağır parçacıklar ne yapar? Onların bu tarafa gelmesinde herhangi bir sorun yoktur.
Hafif parçacıkların neden daha önce tabana çökmediklerinin nedeni, sıvı moleküllerinin sıcaklıklarından dolayı düzensiz harekete sahip olmalarıdır.
Biz bunu termal çalkalama olarak adlandırıyoruz. Bu moleküller bu oldukça küçük ve hafif parçacıklar ile etkileşirler ve asla tabana çökmelerine izin vermezler.
Bu durumda sıvının termal çalkalaması, aynıdır.
Sıcaklık değişmemektedir
Ancak parçacıklar oldukça ağırlaşmıştır. Ve bu yüzden parçacıklar gördüğünüz bu yerçekiminin yönünde gitmeye başlamışlardır.
Eğer bu parçacıklar beyaz ise bu durumda göreceğiniz şey beyaz çökeltidir ve sıvı berraklaşacaktır.
Ve bu sizlere göstermek istediğim bir şey.
Fakat bunu yapmadan önce, sizlere bazı değerleri vermek istiyorum.
Burada oldukça basit, özel olmayan ve herhangi bir laboratuarda kullanılabilen bir santrifüj cihazı var.
Bu santrifüj cihazının devri dakikada 3600 devirdir.
Dakikada 3600 devir, 60 Hz frekansa karşılık gelir.
Yani saniyenin altmışta birinde bir tur dönüyor.
2p çarpı f şeklinde verilen w yaklaşık 360 radyan eder.
360 radyan bölü saniye
Eğer yarıçapın 10 santimetre olduğunu kabul edersek,
her neyse, 15 santimetre olarak alalım.
Şimdi merkezcil ivmenin ne olduğunu hesaplayabilirsiniz.
Ve w kare R şeklinde verilen ac merkezcil ivmesi, yaklaşık 20.000 metre bölü saniye kare olarak elde edilir.
20.000 metre bölü saniye kare
Ve bu, yerçekimi ivmesinin 2.000 katıdır.
Bu, parçacıkları döndürmediğim duruma kıyasla, 2.000 defa daha büyük merkezi ivmeye maruz kalacakları anlamına gelir.
Ve böylece bunlar kenara gidecektir.
Camın kendisi de 2.000 kez daha ağır, bu nedenle cam kolayca kırılabilir. Böylece bir santrifüj cihazı dizayn etmek istiyorsanız, başından sonuna kadar, içindeki parçacıklar bir tarafa uçmasın diye oldukça dikkatli bir şekilde düşünmek zorundasınız.
Burada içinde biraz sofra tuzu çözülmüş su var.
Tamamıyla mutfakta yemeklerinizi hazırlarken kullandığınız sofra tuzu ile aynı. Sofra tuzu burada.
Burada içinde biraz gümüş nitrat çözülmüş su var.
Tehlikeli bir maddedir, bunun için sizleri uyarıyorum. Oldukça dikkatli olmak zorundasınız. Çünkü eğer bu madde elinize değerse, baştan sona kadar elinizi siz farkına varmadan oldukça hızlı bir şekilde yakar ve siyah noktalar oluşur.
Gerçekten aşındırıyor ve derinizi yakıyor.
İnsanlar bunu siğillerin üzerine koyuyor ve sonra siğillerin yok olduğunu düşünüyorlar
Muhtemelen yaptıktan bir süre sonra, parmakları yok alabilir.
Burada, gümüş nitrat ve orada sodyum klorür var. Ve bu ikisini karıştırıyorum.
Böylece sofra tuzu yani,
Sodyum klorür artı gümüş nitrat, sodyum nitrat artı gümüş klorür oluşturtur ve bu oldukça küçük beyaz parçacıklardır. Ve sıvının hemen süt gibi renge döneceğini göreceksiniz.
Göreceğiniz gibi neredeyse, hemen hemen yoğurt gibi olur.
Ve bu yüzden, bunu sizlere göstermek istiyorum.
Burada iki bardak var.
Bu sofra tuzu ve bu gümüş nitrattır.
Onları karıştıracağım.
Umarım bunu görebilirsiniz.
İşte iki bardak burada ve ben bunları karıştırdığım zaman.
Anında süt gibi renk elde ediyorsunuz.
[Sınıf gülüyor ]
Evet.
Sizlerden bunu tatmanızı istemiyorum. Fakat süt gibi görünüyor değil mi? Sadece süt.
Bunu saatlerce, saatlerce ve saatlerce bırakabilirsiniz ve hep böyle kalır.
Çok küçük gümüş klorür parçacıkları içindedir.
Şimdi bunu santrifüj cihazının içine koyacağız.
Onu oldukça küçük bir tüp içine koymak zorundayım.
Bu küçük tüpü, sizlere göstereyim.
Ortalığa kirletmeden bunu içine koymam mümkün değildir.
İşte bu küçük tüp burada ve önce küçük bir beher içine koyacağım. Ve bu küçük beheri kullanarak birazını bu küçük tüpün içerisine aktaracağım.
Bunu bir santrifüj cihazının içine koyduğunuz zaman, bu cam tüp üzerine olan kuvvet oldukça büyüktür. Bu nedenle bunu daima karşı tarafa içine su doldurulmuş bir tüp ile dengelediğinizden emin olmalısınız.
Aksi takdirde, acayip şekilde sarsılmaya başlar.
Aynı sizin çamaşır makinenizde, havlularınızı kuruttuğunuz gibi.
Eğer onları eşit olacak şekilde dağıtmamışsanız, çok müstehcen bir ses çıkarır ve hareket etmeye başlar.
Ve aynı şey burada olur.
Dengeyi bozmamak için diğer tarafa sadece biraz su koymamız gerektiği sözümü dinlemek zorundasınız.
Şimdi yoğurt burada ve diğer tarafta sadece normal su. Burada belli bir zaman beklemesine izin vereceğiz. Ve kısa zaman sonra onu döndüreceğiz.
Halihazırda sizlerin elbiselerinize santrifüj uygulamaktan bahsettim.
Bu sizlerin elbiselerinizi kurutma yöntemidir.
Bu büyük annemin marulları kuruturken uyguladığı yöntemin aynısıdır
Su çevresinden çıkıp gidecektir.
Evdeki elbise kurutma makinesi kolaylıkla dakikada 1200 devirde dönebilir ve belki 200g lik merkezi ivme verebilecek olan yarıçapı 15 santimetredir. Yerçekimi ivmesinin 200 katı.
Böylece giysileriniz 200 kat daha fazla bir yerçekimine maruz kalacaklardır. Bundan dolayı elbiseleriniz 200 kat daha ağır olacak ve bu nedenle giysileriniz yırtılarak ayrılacaktır. Tümümüz bunu görmüşüzdür.
Hepimiz eşyaları kurutma makinesi içerisine koyarız ve onları çıkardığınız zaman, yırtıldıklarında hayal kırıklığına uğrarız.
Bu yırtılma onları maruz bıraktığınız oldukça muazzam yerçekimi nedeniyle olmaktadır.
Çoğu zaman gömleklerimi çıkardığım zaman, düğmelerin yarısının gitmiş olduğunu görürüm.
Çünkü, bu kuvvetten dolayıdır.
Bu kelimeyi kullanmamam gerekir.
Düğmelerin üzerine etkileyen yerçekimi etkisi oldukça büyüktür ve bundan dolayı kopmaktadırlar.
Şimdi ipimin ucunda olduğunuz duruma yeniden dönmek istiyorum ve sizleri etrafınızda fırıl fırıl döndüreceğim.
Daha önce, sizleri etrafınızda da bu şekilde döndürdüm. Ve siz bundan hoşlanmadınız. Sizleri suçlamak istemiyorum çünkü başınız döndü.
Şimdi bu şekilde döndüreceğim.
Bunu daha çok sevebilirsiniz.
Belki de değil.
Ve böylece, ister hoşlanın ister hoşlanmayın, sizleri etrafınızda döndüreceğim ve siz buradasınız.
Bu bir çember
Bir ip var.
Buradasınız
İp burada ve siz oradasınız
Belirli bir hıza sahipsiniz.
Hızınız bu yönde ve merkeze belirli bir R mesafesi var.
Ve bu eğrinin etrafında dolanmak için belirli bir merkezcil ivmeye ihtiyacınız var.
v kare bölü R şeklinde yazabileceğin ac merkezcil ivmesine ihtiyacınız var.
Bu oradaki hızın büyüklüğüdür.
Şimdi beni dikkatle izleyin.
Ve bu ivmenin değerinin sadece 9.8 olacağını varsayın.
Bunu her zaman yapabilirim.
Bu merkezcil ivme için bu kişi itme veya çekmeyi nereden elde edecektir?
İp onu çekmek zorunda mı? Hayır, çünkü her zaman yerçekimi vardır ve yerçekimi daima size 9.8 metre bölü saniye karelik bir ivme verecektir.
Bu durumda ip, "Kör Talih" herhangi bir şey yapmama gerek yok diyecektir.
"Yerçekimi bana ihtiyacım olan 9.8 metre bölü saniye karelik ivmeyi sağlamaktadır" diyecektir. Şimdi sizleri daha hızlı sallayacağım, bu nedenle v hızı dolayısıyla merkezcil ivme artacak.
İp "Aha, şimdi bu kişiyi çekerim" diyecektir. Çünkü yerçekimi ivmesi artık tek başına yeterli olmamaktadır.
Biraz ekstra çekmem gerekir. Böylece, ip gittikçe setleşir ve sizleri çeker.
Ve ben, "Merhaba, oradakiler, yerçekiminin yönü nedir?" diye sorarım. Ve sizler, "Yerçekiminin bu yönde olduğunu" söylersiniz. Neden? Çünkü ipin sizleri bu yönde çektiğini hissedersiniz. Böylece orada yerçekimine maruz kalırsınız.
Şimdi soru geliyor, bu ne kadar gerçek? Bu oldukça, oldukça gerçektir.
O kadar gerçektir ki, eğer sizlerin yerine bir kova su alırsam,
ve bir kova su burada.
Kovaya bir ip bağlıyorum.
Ve etrafında döndürüyorum. Merkezcil ivme 9.8 den yeterince büyük olsun diye etrafında döndürüyorum. Bu durumda ip, eğer sizler su olsaydınız, kesinlikle çekecektir. Ve sizlere, "yerçekiminin nerede olduğunu?" sordum. Ve sizler yerçekiminin doğrultusunun bu doğrultu olacağını söylersiniz. Ve su, “tamam, iyi, benim yüzeyim bu olacak ve bu yönde gitmek istiyorum” diyecektir. Fakat su, o yönde gidemeyecektir. Ve sadece orada duracaktır.
O halde, bu şeyi etrafında ne kadar hızlı sallayabilirsem, sallarım.
O kadar hızlı ki, bu noktadaki ivme değeri 9.8 den büyük olmalıdır.
Kova baş aşağı iken su içinde durmalı.
Pekiyi, ne kadar hızlı döndürmem gerekir? Evet, bazı değerler verelim.
Kova burada ve bunun yaklaşık bir metre olduğunu kabul edelim.
Bazı değerleri yuvarlayalım
R yaklaşık bir metredir.
Ve v kare bölü R nin, 9.8 den daha büyük olmasını istiyorum.
Bunu sadece 10 olarak alalım.
Bu, v’nin 3.2 metre bölü saniyeden daha büyük olması anlamına gelir.
Bir tur dolanmak için geçen zaman 2pR bölü hız, olduğundan, bu zaman
2 saniyeden daha az olmalı
Eğer bunu etrafında 2 saniyeden daha kısa zamanda sallarsam, iyi olacak.
Şimdi, bunu etrafında hareket ettirirsem, hızın her yerde sabit olmadığını fark ettim.
Hızı yerçekiminden dolayı her yerde sabit yapmak oldukça zordur.
Fakat bir fikir edinmek için yeteri kadar yakındır.
Eğer bunu 2 saniyeden daha hızlı döndürürsem ve eğer fizik geçerli ise, kovanın ağzı aşağıya doğru geldiğinde, suyun dökülmemesi gerekir.
Bu kovayı su ile dolduralım.
İşte başlıyoruz.
Bu konuda her zaman endişe ederim.
İlk olarak santrifüj cihazına bakalım.
Santrifüj cihazının görevini yapıp yapmadığını görmeliyiz.
Tüp hangisinde idi?
Sanırım, 4 numaradaydı.
Oh, evet! Sıvı şimdi oldukça berrak. Görüyor musunuz, beyaz madde bir tarafta toplanmış.
Sizin için görmek gerçekten oldukça zor.
Elimi altına koyayım.
Belki bazılarınız bu beyaz maddeleri görebilirsiniz. Fakat artık süt görünümünde değil.
Gerçekten çok berrak bir sıvı.
Burada biraz beyaz maddeleri görebilirsiniz. Aynı zamanda kenarda da var
Gerçekten burada görebilirsiniz.
Burada beyaz madde görebilirsiniz. Çekiminin yönü bu yönde idi.ve burada sona biriktiler. Ve burada biraz var.
Tamamıyla çok aşikâr
Beyaz şeyleri görüyor musun? Bu gümüş klorürü ayrıştırmanın bir yoludur.
Şimdi biz bu gözü pek, gözü pek deneye geldik.
Suyu dolduracağız ve suyun çekimin bu yönde olduğunu, bu yönde olmadığını düşünüp düşünmemesini sağlayacağız.
Şimdi, orada doğru olanı yapıyorsun.
Sizi suçlamıyorum.
Tamam.
İşte başlıyoruz! Suyun tamamıyla doldurulduğunu görüyorsunuz. Büyük ölçüde 2 saniyeden daha hızlı bir şekilde döndürdüğüme dikkat edin
Ve su, yukarıya vardığı zaman, çekimin sadece tavana doğru olduğunu düşünüyor.
Fizik geçerli.
Şimdi, kim bunu benim için yapacak?
Lütfen, birisi bunu denesin.
Bunu yapabileceğini düşünüyor musun? Haydi dene.
En kötü durumda, bir felaket olacaktır.
Tamam, yapabileceğine karar ver, bunu denemeden önce benim uzakta olduğumdan emin ol.
Ama önce yavaş salla, kendine çok yakın tutma. Zarar görmeni istemiyorum.
Hızlı döndür; daha hızlı, daha hızlı
Şimdi yapabilirsin.
Daha hızlı için çabala. Evet, daha hızlı!
Bu çok iyiydi.
Gelecek derste görüşürüz.